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ABSTRACT

Because breaking internal w, aves produces most of the turbulence in the thermocline. the statistics of (, the
rate of turbulent dissipation, cannot be understood apart from the statistics of internal wave shear. The statistics
oft and shear are compared for two sets of profiles from the northeast Pacific. One set, PATCHEX, has internal
wave shear close to the Garrett and Munk model, but the other set. PATCHEX north, has average 10-m shear
squared, <S'o>, about four times larger than the model.

The 10-m shear components, S. and S,, were measured between I and 9 MPa and referenced to a common
stratification by WKB scaling. The scaled components. S, and 9S. are found to be independent and normally
distributed with zero means, as assumed by Garrett and Munk. This readily leads to analytic forms for the
probability densities of S'o and S9o. The observed probability densities of S'$ and Sbo are close to the predicted
forms, and both are strongly skewed. Moreover, c,.s0 and Orj,4 are constants, independent of the standard

III -deviations of S. and S,. The probability density of the inverse Richardson number, Ri S2o/(!N2 ). is a
_ scaled version of the probability density of S'0. The PATCHEX distribution cuts off near Ri -G = 4. as found
WU ___ •by Eriksen, but the PATCHEX north distribution extends to higher values, as predicted analytically. Consequently,

-' a cutoff at Ri - = 4 is not a universal constraint.
Over depths where (N 2> is nearly uniform, the probability density ofO.5-m (can be approximated, to varying

degrees of accuracy, as the sum of a noise variate with an empirically determined distribution and a lognormally
• distributed variate whose parameters can be estimated using a minimum chi-square fitting procedure. The 0.5.

m t, however, are far from being uncorrelated, a circumstance not considered by Baker and Gibson in their
analysis of microstructure statistics. Obtaining approximately uncorrelated samples requires averaging over 10
m for PATCHEX and 15 m for PATCHEX north. These lengths correspond approximately to reciprocals of
the wavenumbers at which the respective shear spectra roll off. After correcting the uncorrelated * samples for
noise and then scaling to remove the dependence on stratification, the scaled dissipation rates, i - t(N/

" •.. \ •, are lognormally distributed. (Without noise correction and (N') scaling the data are not lognormal: e.g., noise
0 correction and scaling with (N' > and (N3 2 > do not produce lognormality.)

It is hypothesized that the approximate lognormality of bulk ensembles of i results from generation of turbulence
in proportion to S9o. Lognormality is well established for isotropic homogeneous turbulence (Gurvich and
Yaglom), and Yamazaki and Lueck show that it also occurs within individual turbulent patches. Bulk ensembles
from the thermocline, however, include samples from many sections lacking turbulence as well as from a wide
range of uncorrelated turbulent events at different evolutionary stages. Consequently, the bulk data do not meet
the criteria used to demonstrate lognormality under more restricted conditions. If the authors are correct, the
high-amplitude portion of <N 2 )-scaled bulk ensembles is lognormal or nearly so owing to generation of the
turbulence by a highly skewed shear moment. As another consequence, alr,. = 2.57 should be an upper bound

"A for 10 m &I.; when the turbulence is produced by the breaking of random internal waves. Because many parts
of the profile lack turbulence, sensor noise limits the t distribution to smaller spreads than those of 9"1o. In
practice we observe 2in; = 1.2 when SIC, equals GM76, and &w 1.5 when S' is about three times GM76.
For the larger spread, 95% confidence limits require n 60 for accuracies of ±100%, n - 140 for ±50%, and
n - 2000 for ±10%. Owing to instrumental uncertainties in t estimates, the authors suggest accepting les
restrictive confidence limits at one site and sampling at multiple sites to estimate average dissipation rates in
the thermocline.
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saubies and Smith (1982) refined these approaches. V
and McComas and Muller ( 1981 ) and lienycy et al.
(1986) extended the analysis b. show ing that the rate
at which interactions within the internal waxe field and
move energy toward small scales and ultimate dissi-
pation depends on N and E. the dimensionless eaiergy e.
density of the internal wave field. l'hat is, (,,
x (N 2 )E2, where ( \. denotes an arithmetic mean. ihlus. t',,, is a simple scaling of'thc l'Ourlh shear moment:
If this line of development is correct, the axerage dis- that is, combining I) and (2) iehds
sipation rate. 0), depends only on these average pa-
rameters and is thus independent of the physical o, (4)
mechanisms producing the dissipation.

Because free-fall profilers do not adequately measure where the constant has units of meters squared per
E. which is dominated by very low wavenumbers, second, and N scaling of shear is defined in the next
Gregg (1989) recasts the McComas and Miller ( 1981 ) section. In Fig. 1. K,,, is plotted on the x axes. and ( is
and Henyey et al. ( 1986) results in terms ofthe variance on the i' axes.As is evident in the top panel. 10-m pairs
of internal wave shear, are weakly correlated and have trends beginning near

log, RiI = 0. Nevertheless. the large scatter dern-
, 1 2) S ]onstrates that equality between ' and ý,,, does not appl\

7ill 7 0XA1 [W kg I. (I) to individual estimates but to a\erages. Averaging oxer

100 m greatly reduces the scatter. and using 800 m
where NO - 0.0052 s'. SI, is the fourth moment of produces a tight distribution about the dashed line rep-
the 10-m shear produced by random internal waves, resenting the model.
and S4 it is the corresponding moment for the Garrett Because ( 1 ) applies only to averages, we treat the
and Munk ( 1975) model. [This model is known as scaling as a relation between two random processes.
GM76 when modifications by Cairns and Williams Specifically. we
(1976) are included.] The revised scaling was applied * sust how well our observations can be modeled b>
to six sets of profiles of instantaneous shear and dis- random processes,
sipation from sites where internal waves provide most * examine to what degree probability densities of
of the shear. For these data. the largest ratio of K•>/ and K,,, are related,
vK- , / is 283 times the smallest (v is the kinematic * form confidence limits for these variables, and
viscosity and (K)/Kv N 2 ) is a measure of the intensity * examine what the confidence limits imply about
of turbulence in stratified fluids). Applying (I) reduces
this range to a factor of 3. Therefore, in view of the sampling.
limited variability of K ,V2) in the thermocline. vari- Gargett (1990) suggests that scalings other than ( I
ability in shear appears to be the principal factor caus- provide equally good fits to data, This may be true.
ing variations in 1&3. Wavenumber spectra of'this shear but, for the 100-m and 800-m averages plotted in Fig.
variability are given by Gregg et al. ( 1992 ). 1. two-sample Kolmogoroff-Smirnoff tests show no

To examine whether ( I ) applies to individual 10-m significant differences between the ( and ;, distribu-
estimates, we use two sets of profiles taken with the tions. Consequently, we cannot reject the hypothesis
multiscale profiler (MSP) between I and 9 MPa ( 100 that in each case i and ý,,, are identical populations.
to 900 m) during the Patches Experiment (PATCHEX) Therefore, whether or not ( I ) is a unique scaling, it
in the eastern North Pacific. The first dataset (Gregg adequately relates averages of dissipation and shear.
and Sanford 1988) contains 27 profiles from a diffu- Determining which scaling is best will require I ) ad-
sively stable thermocline in which the variance of ditional simultaneous measurements of shear. N,. and
finescale shear is close to GM76. Severa, days after the (: and 2) carefd examination of the statistics- We ini-
main PATCHEX observations, five profiles, referred tiate the latter in this paper and focus on the axeraging
to as PATCHEX north, were taken below a week-old required to collapse widely scattered pairs of i and
coastal jet off northern California. The shear variance ,,, to the close equality found between their averages.
of the second dataset is about four times GM76. Of In section 2 the normalit-y of the shear components
the six datasets used by Gregg ( 1989) to compare f is tested and probability densities are developed for
and shear, only the two sets analyzed here. PATCItEX .'. Ri ,, and S,. After a brief review of the lognor-
and PATCHEX north, contain simultaneous inca- mality of ( at the beginning of section 3. we test the
surements ofE and shear witii internal waves at average Iognormality of our data and then compare the prob-
or above-average intensity. ability densities of' and i,_. In section 4 we present

To treat the observations in each dataset as single confidence limits for the shear moments and for log-
ensembles, the N dependence of the profiles is removed normal f data. and we also discuss implication, for
with sampling. We conclude in section 5 with a summary
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Fl(;. 1, Scattcrplots of logl,,,i versus log,of'_ for averages over 10 mn. I(X) ni, and 8(X)mt. PA I CI IIX
data are shown hy dots in the top panel and -stars in the lower panels. PAICHIEX norih datl;)are
shown by open circles. The heavy dashed line is log,,; Ig09o;.

and discussion. Throughout the paper we use non- sented as random processes. as assumed h, GN116. This
parametric sta~istical tests wherever possible. Often involves first demonstrating u~ncorrelatcdties InI tile
several tests are applied to examine different aspects of vertical and pair\Nise betw&een components. T"hen we
the data. To maintain continuity in the discussion while can florin momnents of' tile data and test whethet thle
being thorough with the statistics, many details oC the distributions tit analytic nmodels. Because tests applied
tests are in the appendixes. to individual profiles are not rigorous. ov~ing to small

sample SIMeS. We uIse sc'.eral methods, for each fh~lpothl-
2. Statistics of shear and its moments ests, we lest. expecting gross deparftures from o'ur \

Our goal in this section is to investigate how well potlicses to he apparent In aIli tests. We note minor
Instantaneous shear and its moments Lan tbe repre- decparLtures. hut assume that their presence does not
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invalidate further development. Details of statistical = 2.79 X 10- s-,and for PATCttEX north a, = 4.83
tests used in this section are in appendices A-C. X 10.-3 s-'.) As seen in the lower panels of Fig. 2,

overlaying these normal probability densities and his-
a. The shear components, 9, and S•, tograms of the observations reveals good fits.

Working with our assumption of independence, we
With eastward and northward flow represented by apply the Lilliefors test statistic (appendix A) to test

U and V, the shear components are computed as the hypothesis that S,. and S, are normally distributed

_ _U) . (= 2 V with zero means and common variances. We find that,
S.-= , SV- , (5) at the 5% level of significance, we cannot reject this

A /Z hypothesis. A visual equivalent of this test is displayed
with Az = 10 m (Gregg and Sanford 1988). The factor in the upper panels of Fig. 2, which show quantile-
of V2.II corrects for the attenuation of the first-differ- quantile (q-q) plots (Chambers et al. 1983), with ob-
ence filter, making the shear variance comparable to served distributions along the vertical axes and fitted
an integral of GM76 to 0.6 rad m-' (0. 1 cycle per me- normal distributions along the horizontal axes. If the
ter). Systematic changes resulting from changes in observed distributions were identical to the fitted dis-
stratification are removed with tributions, the data would plot along diagonals from

No lower left to upper right. The Lilliefors test statistics
S NN, , 0 (6) provide a way of plotting 95% confidence limits to as-

- SA7 1 sess whether uoserved departures from the diagonal
> -

Based on two nonparametric statistical tests, the run are consistent with random deviations. For both da-
tasets, ot remains within the 95% confidence limits, as

test and the spectral distribution function, we cannot is the case for ea (not shown). Therefore, we can treat
reject at the 5% level of significance the hypothesis that t
for PATCHEX S,, and Si are vertically independent, the shear components as normally distributed with zero
aou there iS, andSo are evidenceaoflweaknverticalcor- means. Under this assumption, we use an Ftest to findalthough there is some evidence of weak vertical cor- that, at the 5% level of significance, the variances of S9
relation. (See appendix A for details.) Neither can we at, at te %leel o significane.
reject the hypothesis that the shear components are and S. can be taken to be the same.

pairwise independent of each other. We thus assume
the PAICHEX shear components are independent b. The second moment, Slo, and the inverse
both in the vertical and pairwise. This, however, is not Richardson number
true for PATCHEX north, as one of the five profiles Unscaled and scaled second moments are
is rejected by both tests (appendix A).

Means and standard deviations of N-scaled and Sto -- $ + S., So0 S1 + SY. (7)
unsealed shear components are given in Table 1. Al-
though N scaling has little effect on the standard de- When Sx and S,, are normally distributed and uncor-of2

viations for PATCHEX, it increases by 50% the stan- related, the probability density of S10 can be calculated
dard deviations for PATCHEX north. Taking a., and readily because it is the sum of the squares of Sx and
&Y as the sample standard deviations of 9x and Sy, we S,. The result is an exponential distribution (Papoulis
compute normal probability densities having zero 1984),
means and a - ( l/2)(&x + Fr). (For PATCHEX E exp(-yl2a•)

P1. 2 H(y), with 1,= = S• + -•;

TABLE I. Means and standard deviations of 10-m shear compo- (8)
nents. The PATCHEX distributions have 2187 samples, and the
PATCHEX north distributions have 405 samples. Parameters scaled H(y) = I for y >_ 0 and 11(y) = 0 for Y < 0. (If nor-
w'th (N2 ) are overstruck with a circumflex. a 2= ,- mahized to a, I 1, Pi.s' -"with two degrees of freedom.)

Mean Standard deviation The q-q plots of log oS2o show the PATCHEX distri-
bution slightly crossing the 95% confidence limits but

PATCHEX all the PATCHEX north distribution remaining inside
S -2.20 × l0- 2.50× l0~ (Fig. 3). (The probability density of log,( iS's derived

SY -4.26 x 10-' 2.63 X 10-' in appendix B.)
91 -4.88 X 10-' 2.74 x 10 ' To the degree that the gradient Richardson number
s1 -3.68 X 10-' 2.84 X l-' is not influenced by fluctuations in N" induced by in-

ternal waves, the probability density of log1 o Ri -' is
PATCHEX north simply a shifted version of the probability density of

S -2.68 X 10 3.33 x 10 the second moment of the scaled shear, that is, log,(
S- -5.79 X i0-6 3.20 x 10- Riu, = logloSlo + 4.57, where logoNo = -4.57. The

-7.25 X 10-' 4.91 X 10' critical value for dynamic instability of parallel shear
7.82 x 10-6 4.74x l(0 flows is Ric` = 4 (Miles 1961 ). corresponding to logo



AUGUST 1993 GREGG ET AL_ 1781

0.02 " I

0-00 -- .E E - -

theoretical theoretical-0.02 , I ,I1I

150

PATCHEX PATCHEX north
1-9 MPa 1-9 MPa

_-N (0, 0.00279)

C
._ 100

C
N (0. 0.004831

(/,.
C

0

. 50

-0.02 0.00 0.92 -0.02 0.00 0.02

S" / s", ,x I S-1

FIG. 2. In the lower panels, normal probability densities having zero means and standard deviations of
a, are shown by heavy lines. The observed probability densities of S, are shaded. In the upper panels, q-q
plots have the observed (empirical) distributions along the vertical axes and the normal (theoretical) dis-
tributions along horizontal axes. The observed distributions fall within the 95% confidence limits of the
theoretical distributions (dashed lines), which are much wider for PATCHEX north, 405 samples, than for
PATCHEX, 2152 samples. Appendix A describes calculation of the 95% confidence limits.

Rig- = 0.6. From the log 0o Rij-0 scale in Fig. 3, we see waves, but review of his data shows that the energy
that the PATCHEX distribution drops to zero just to level cannot be distinguished from GM76 (Eriksen
the left of 0.6, similar to previous reports of cutoffs of 1991, personal communication). Thus, Eriksen's ob-
Richardson number at the critical value (Eriksen 1978, servations are fully consistent with our distribution for
1982). Only 0.2% of the PATCHEX samples have logl0  PATCHEX, but the PATCHEX north distribution
Ri -d > 0.6, compared with 17.5% exceeding log,0  demonstrates that Eriksen's result cannot be general-
Ri -iJ > 0. The observed probability density for ized; 10-m Richardson numbers smaller than one-
PATCHEX north also follows the theoretical predic- fourth occur for shears above GM76.
tion, but it does not cut off at the critical value; 9% of c. The fourth moment. 9'o
the samples exceed logo Ri -0 = 0.6, and 56% have
loglo Ri-n > 0. Replotting in more conventional form Unscaled and N-scaled fourth moments are
(Fig. 4)shows the PATCHEX north Richardson num- S4 _ (S20)2 , S4o m (S-o)2 . (9)
bers peaking sharply between 0.25 and 0.5.berspeaingsharly etwen 025 nd .5.As shown in appendix B, we can use ( 8) to obtain the

Munk (1981) argues that saturation of the shear Apct
spectrum prevents Richardson numbers from dropping probability density of So; namely,
below 1/4, even when the shear rises above the back- P.,(y,) _ exp(-y/2 -)
ground state modeled in GM76. He bases his argument W g'(YO) I 4yo Hy
on observations by Eriksen ( 1978), who computed the 2
Richardson number by first-differencing data from w = S10. (10)
current meters moored 7 m apart in the vertical. Er- Provided that S,, and Sy are normally distributed and
iksen did not discuss the energy level of the internal uncorrelated, the standard deviation of the natural log-
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FIG. 3. In the lower panels, observed probability densities of loglaS20 (shaded) are compared with the
predicted form (B I), shown as heavy curves. The light curves are the cumulative distribution functions of
the observed distributions. Vertical dotted lines mark. constant values of log, Ri ,1. The critical Richardson
number of 0.25 corresponds to log,0 Ri -' = 0.6. In the upper panels. q-q plots have the observed (empincal)
distributions along the vertical axes and the theoretical distributions along horizontal axes. Part of the
PATCHEX distribution falls slightly outside the 95% confidence limits, but none of the PATCHEX north
distribution exceeds the confidence limits. Confidence limits were computed using the exponential case of
Mason and Bell (1986).

arithm of the S0, aFgSo, is a constant equal to 2.57 to their rotation, they rapidly decorrelate S,, and S, but
and does not change with variations iti E. The distri- not Wf1 and $4o. In addition. when data from all profiles
bution of log!oSo (BI I ) is highly skewed, with a long in the same cruise are treated in a single ensemble. the
tail extending to very small values. Comparison with standard deviations oflog10Si1 and log 1l(So do not de-
the observed probability densities shows parts of the crease as rapidly as they should for independent sam-
PATCHEX distribution slightly outside the 95% con- pies (appendix C). In some cases, observed standard
fidence limits on q-q plots and all of the PATCHEX deviations exceed predictions by more than 50%. The
north distribution inside the limits (Fig. 5). discrepancies are largest when averages of full profiles

To investigate why the PATCHEX distributions fall are compared, which suggests weak temporal coher-
just outside the 95% confidence limits, we examined ence.
the vertical correlation structure of the shear moments.
As discussed in appendix C, we find no evidence of d. Summnary
vertical correlatedness in S10, but there are indications
of temporal correlatedness. For PATCHEX. direct ev- Probability densities of.S, and •,. are adequately ap-
idence comes from averaging ,'o and Sg() vertically proximated with normal distributions having zero
over 100 m and applying run tests to time series in means and common variance. Empirical tests suggest
each pressure range. For both moments, two of the that 5, and S, are uncorrelated for PATCHEX. but
eight series fail the run test, although 9., and S, pass. PATCHEX north may have some correlatedness. As-
We are uncertain of the reason, but believe it likely suming uncorrelatedness, we derive analytic forms for
that near-inertial motions dominate the shear. Owing the probability densities of log1(.()ý and logl 1 . Ob-
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23- . ----- .sequentl],, the sampling problem is to observe enough

WA" CHEX of the inIrequent large values to ensure precise a\cragcs.
MPa For statistically homogenLous and isotropic Iurhu-

2 lent flows, Gurvich and Yaglom (1967) shovw that the
.8- turbulent cascade leads to lognormal probability den-

sitiesofc: that is. Ine is normally distributed. Lognormal

06 distributions are typical for positive-definite variables
produced by repeated multiplicative applications of a

04ý random process. For example. the sizes of sand grains

broken off' nearby rocks are lognormal, as are dissi-
, pation rates of the smallest eddies in a turbulent cas-

02! 1 cade. Lognormal probability densities are parameter-

ized by pl,, and Uln,. the mean and standard deviation
0.0
o0 - , F---- of In(. Gurvich and Yaglom (1967) argue that G,.

I which measures intermittence, and hence the difficult\
I PATCHEX 2 of sampling, increases with Reynolds number. At pres-o 1 9 MPa ent, however, there is no way' to estimate an, a priori.

200 0 even in homogeneous turbulence (Yamazaki and
Lueck 1990).

03- IThe airfoil probes used on MSP to detect velocity0o3L
microstructure also respond to thermal transients hav-
ing frequencies of 0.1-1 Hz (Osborn and Crawford

- 021- 1980). At the MSP fall rate. these frequencies corre-
SL .spond to wavenumbers of 0.3-3 cpm. To minimize

Cl the effect of thermal transients and to detect short-
length changes in turbulent intensity, we compute ( by

S ,2, , ,, ,. integrating spectra taken over 0.5-m data windows.
R1I In examining the statistics of E. we must consider
Ri,0  whether the samples are correlated. Only with uncor-

FIG. 4. Observed probability densities of Rio (shaded) compared related samples can we accurately bound the degree of
with predicted forms (solid lines). At low values, both observed dis- intermittence and estimate confidence limits for bulk
tnbutions cut offas predicted theoretically. For PATCHEX. the cutoff ensembles of dissipation. Uncorrelatedness has not
is close to Rijo = 1/4. For PATCHEX north, the cutoff occurs at
smaller values, and 91/ of its samp!es are smaller than 1/4. been addressed previously-investigators have merely

assumed it. regardless of sample length or local cir-
cumstances. For example, Baker and Gibson (1987)

served probability densities of these moments are close assume uncorrelatedness for 0.23-I.15-m samples

to the predictions, with the PA [CHEX north distri- along horizontal tows taken by Washburn and Gibson

bution within the 95% confidence limits and the (1984) and for 100-200-m samples along profiles taken

PATCHEX distribution slightly outside at some places. by Gregg (1977). Confidence limits computed using

Because this pattern is contrary to what would be ex- standard deviations from positively correlated data are

pected from the correlation tests on S, and ý , we sus- usually optimistic: that is, they give tighter limits than

pect that the discrepancy results from weak temporal warranted.
coherence between the PATCHEX profiles and that
this coherence results from near-inertial motions, a. Prohahility densities of 0.5-m
Probabilitv densities of Richardson number, computed
using the mean stratification, agree with the predicted Probability histograms of log,() for the 0.5-m sam-
distributions. The PATCHEX distribution cuts off near pies are highly skewed, with long tails at large magni-

Ri o = 1/4. as found by Eriksen (1978), but the tudes and sharp cutoffs at low magnitudes (Fig. 6).
PATCHEX north distribution extends to smaller val- Probability distributions have long been described as
uef. Therefore, a cutoff at Ri = 1/4 is not a universal resulting from approximately lognormal oceanic signals
condition. at high magnitudes and noise at low magnitudes. Ob-

servations are considered noise when their spectral level
3. Statistics of dissipation drops to a low level that is only approximately constant

because the ensembles are collected using probes having
Turbulence is inherently intermittent. Even when different noise levels and sensitivities. For MSP this

turbulence is statistically homogeneous, local concen- level is 10 "' W kg 1 (Gregg and Sanford 1988). Be-
trations of small-scale shear determine average dissi- cause is positive definite, noise distributions are not
pation rates. <(), throughout the entire volume. Con- expected to be normal but are closer to lognormal.
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FIG. 5. In the lower panels, the observed distributions of logloglo (shaded) agree well with the prediction
(BI I ). In the upper panels, q-q plots based on modified Lilliefors statistics show parts of the PATCHEX
distribution slightly exceeding the 95% confidence limits. None of the PATCHEX north distribution falls
beyond the bounds.

Distributions that are mostly noise were observed by of dissipation and shear, and an, shows no trend and
MSP on the equator during TROPIC HEAT 2 in April has an average of 2.56 ± 0.17.
1987. Below the undercurrent, zones several hundred
meters thick frequently contain little or no measurable b. Averaging 0.5-. C to obtain uncorrelated
dissipation. In Fig. 6 the distribution of E from 9 to 9.5 estimates
MPa during TROPIC HEAT 2 is seen to be similar to Even casual inspection of profiles of 0.5-m t shows
the low-magnitude portion of the PATCHEX distri- vertical trends, with patches of contiguous large values
bution. separated by zones at the noise level (Gregg et al. 1986).

We can estimate the lognormal parameters by fitting Consequently, applying the run test to unscaled ( be-
the observed histograms to a function that is the sum tween 2.5 and 5.0 MPa, where N is uniform, results in
of the TROPIC HEAT 2 noise distribution and a log- all profiles being rejected (Table 2). Increasing the av-
normal distribution. Taking data in increments of I eraging length, L., slowly decreases rejections. For
MPa, we use a minimum X2 procedure to estimate PATCHEX, L: = 8 m yields 3 rejections in 27 profiles.
means, i,,, and standard deviations, ri.. These esti- a ratio found previously for random rejections of un-
mates are given as Ai,, and Zji,. As described in appen- correlated data (appendix A). Further increasing L. to
dix D, the procedure works best for PATCHEX north, 10 m removes all rejections, and we treat 10-m
which is less affected by noise. For PATCHEX, jin, PATCHEX averages as uncorrelated. PATCHEX
decreases strongly with pressure, and &I, increases north requires averaging over 10 to 15 m for no rejec-
gradually from a1l, = 2.9 at 2-3 MPa to Zam, = 3.2 at lions. In both cases, the minimum averaging length
8-9 MPa (Fig. 7). Its average is 3.01 ± 0.13. For required for uncorrelated samples corresponds to the
PATCHEX north, Ain, increases only between 2 and 5 reciprocal of the wavenumber (in cycles per meter) at
MPa, reflecting the nonuniform vertical distribution which the shear spectra roll off (Gregg et al. 1992).
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.. . .. of 1-9 MPa, II PATCHEX records fail the run test

1.6- 0 m5stmates and 6 fail with the spectral distribution function (Table
TROPIC HEAT 2 3). These failures result from the increasing effect of

945 M o 0wnoise below 5 MPa. To correct for the noise, we set to
zero all 0.5-m samples with t < 10 'O. Out of 2187

I 10-m intervals for PATCHEX, 35 have no 0.5-m sam-
-,ples with e > 10 "). Omitting these, only I of the

=>, PATCHEX profiles fails the run test, but 6 still fail
, '_ with the spectral distribution function (Table 3).

Therefore, a minority of the records have some vcntical
correlatedness, even after noise correction. Because

04 , PATCHEX oth noise is less important for PATCHEX north, no 10-m
intervals had to be dropped, and noise correction does
not affect the run test or the spectral distribution func-

00 tion (Table 3). Removing noisy values decreases the
, 10 o magnitudes of the smallest 10-m averages, thereby in-

creasing Gri, for both datasets (Table 4).
FIG. 6. Probability densities of all 0.5-m logot0 samples between I

and 9 MPa for PATCH EX (shaded) and for PATCH EX north (solid
line). They are compared with a probability density obtained between d. Probability densities of noise-corrected JO-m
9 and 9.5 MPa on the equator during TROPIC HEAT 2 (dashed
line). The latter appears to be nearly all noise. Applying (N'> scaling to the noise-corrected data

affects the standard deviation differently for the two
records because they have differing vertical distri-

c. Noise correction of the JO-rn estimates butions of dissipation (Table 4). Taking the (N 2>-

To facilitate comparisons of the datasets, we average scaled and noise-corrected distributions as the most
iover 10 m and scale with (N 2 ) to form; (3). Testing accurate, for PATCHEX the sample mean of Ini,
these profiles for uncorrelatedness over the full range Ain; = -22.240 and the sample standard deviation of

Ini, &1.; = 1.188; for PATCHEX north ji-n; = 20.270

and Eri; = 1.463.
.27 -25 -23 .21 0 2 4 After noise correction and (N 2 > scaling, both da-

t tasets pass q-q tests for lognormality (Fig. 8). With
only (N 2> scaling or with only noise correction, neither

3 3 TABLE 2. Run tests on averages of 0.5-m r between 2.5 and 5.0
MPa. Because noise contamination is insignificant and the stratifi-
cation nearly uniform, no corrections are applied to f. The number
o'ef"or;ons is left orthe solidus. and the number of samples is right.
The number of samples in each profile decreases with increasing

0. averaging length, L.:. All profiles fail for L, = 0.5 m, which represents
• 5 5 no averaging; for example, for PATCHEX there are 27 rejections for

*• ,PATCHEX . 27 profiles. Rejections decrease with averaging; there are none for IL,
10 m for PATCHEX and 1, = 15 m for PATCHEX north.

PATCHEX - l./m n Rejections
north PATCHEX

0.5 t500) 27/27
2 125 23/27
4 63 7/27
5 50 6/27

9 8 32 3/27
10) 25 0/27

FiG. 7. Parameters for 0.5-m Inn, obtained by X 2 fits to data taken

in I MPa increments. PATCHEX values are shown by open circles
and PATCHEX north by crosses. Reflecting different vertical distri- PAT(lEX north
butions of <4>, ,I. decreases rapidly with pressure for PATCHEX 5 160 5/5
but increases slightly for PATCHEX north. For both datasets. esti- Mo 84) 2/5
mates of the standard deviation, &,., are nearly constant below the 15 80 0/5
near-surface high- N duct.
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I BIt I I ests for %ertical independence o, . I eO',s on i-m I- It iS C*Ntt ed b% 0.950 Xii Ih. c[' peCtCd \ al'ie of
between I and L MPa. St)F reters to the specral distnrbution Iiunctl," "
I he number of rejections is to the left and the numbeICr of profilCs iNto the right. I"[ I exp p., (f.o;,,). I 12i

Runs rejcted SI)F reje:ted It Is C'tltel h.I i.' \f lI, + h\. I or! ll \ It IlI V.
the eslimale of' /,- i 4.(II 5 I Ji arld the Cx1l mteC

P AI( IEF 0l t"1; i 4.45 10 . Ih z I. I aL. ssi1hin 2, of -

uncorrtected 11/2 (,/27 4.55 10 Ili a\s eraceii oflh lhe notse-c,. reetd a.ld
noise corrected I 27 6/ _1, 7-scaled dissipation d;ata. do lo P It" Il H north,

thc estinlate of A1K I ix 4. 1 S IMl 'and the estimate
PA\ I ti X north of' I jts 4 59 1. I .hieh are 20, 2 of,

uncorrected 5, 5.13 - 10
noise corrected '5 Because f is much more al,.ctcd b\ noise than is

* their probability densities do not agree at lo\, mag-
nitudes, particularly for PATIC[!- .X ( Fig. 9 _. 'I o ,er'

distribution passes, owing to vertical trends remaining onstrate the etfi.'ect f noise, we crudely simulated it h\
in the profiles. We also scaled with N' and 32. pro- adding 5 X 10o I•(A,,/N)- to the I,-in \, salues and
posed by Gargett ( 1990) to remove vertical trends. then converted them to i, . As seen in the lower panels
These scalings do not completely remove vertical of Fig. 9, adding the noise greatly improves agreement
trends, and owing to the trends the scaled data do not at low magnitudes.
pass for lognormal.

Averaging the 10-m samples over 100 and 800 m
reduces • by factors of 2-3. considerably less than 4. 'onfidence limits and sampling
the reduction expected for uncorrelated samples (Table a l'/ second muoment olshear..S•,,
5). For example. averaging ten of the PATCHEX sam-
ples reduces s-,; from I. 19 to 0.64 instead of to 0.47 Because Sh0 is a resealed X random variable with
as expected. This is similar to the slower-than-expected two degrees of freedom. contidence limits for lt )
decrease in a~,•,;-,,. - _ can readily be found based on an average of n

independcnt samples,. (1 / n) Ž ', Sj,. These
e. Comparison wilth probabilitty densities o!. 4, limits can be stated as the interval

Scaling the SM0 distributions as ii, and overlaying [L,, x , I-,, x , (13)
them on the noise-corrected i distributions reveal that As shown in appendix .

both distributions are similar at large magnitudes (Fig. It 2n
9). (Appendix E includes a more quantitative com- , and t'. . (14)
parison using q-q plots.) Agreement at high magnitudes 'I,. ,.2,,.,
is important because the high-magnitude tails heavily where X,2.-, Is the qlh percentage point of the x dis-
influence the mean values, or first moments. The ex- .,.t

pected value of',, is obtained by using (4 ) and ( 133): tribution with v degrees of freedom, and p is the con-
tidencc level. For p - 0.95. averaging 10 samples gives

:1,,,j = 0.959/F[S,,I 0.959 X 8,T,. ( I I) L.1 = 0.585 and U1 , 2.09 (Fig. I0). As n increases.

rAitI.i 4. Statistics of I}r-m dissipation between I and 9 MPa. For hoth dalasets the 1O-m estimates are Iirmed in three sa ris.Arthmetic
averages include all 20 of the 0.5-m samples in the 10-m ini,.rval. Noise-corrected 1t-m %alues are computed ht setting to /ero 0.5-m
samples less than 10 "' W kg I. For PATCIIEX 35 of the It-m averages contained no %alueN larger than the noisc and %ere dropped from
the corrected ensemble. Finally, the noise-corrected estimates are scaled using (3.

Data ft

PA | I 11i X

arithmetic 2187 4.31 • ft > 22.35. ]0I
noise corrected 2152 4,112 If) H' 2272o 1.3 3
noise corrected andi ,N" scaled 2152 4.55 1 1I1 H 22 2411 I.

PA-ICIIF north

simple average 40f5 2.12 I0f i,.9 S 1201,3
noise corrected 405 2. I l o " 21.0157 1.40,8
noise corrected and A' scaled 405 5. 13 {1 _t 210 271 1.461



10.

theoretical theorcicats

PATCHLX PA1 CH EX norlh
1 9 NPa -9t
10 m samnplts 10-rn sarrpý(us

0 81i- noise corrected inoise corrected

G in t 1.188 ('Tin. i 1461

S06

10 raeL ~Ctse

e1t1m0ting meoans , a end sitanariesiatof N ro thaed ad nist -crib t CIon. - ispainrts I el%

L,, and I, slowly- converge to 1: averaging the 27 larger than the exp-cted distance based on Sp. For
PATCHEX profiles between 500) and 600 m gives I-,j these reasons. the confidene limits for' H )In (15)

S0.89!1 and U-,, = 1.l13. and averaging all PATCHEX are prefierable.
data has ing matching noise cosrrected f' ieldk L,ý Because L12, and t -12 depend onlk on n. the-, are the

0.959 and L . 1.04. same for both datasets. Forming the 100-rn aserages
plotted in Fig. I requires )I -> 10. resulting In L1.

.11 urhmomenil of shear, 0.58S,2- 0.342 and U~ 2.09- 4.36. U~sing (4
to convert .SIto ;'_ we also mutiilp1% the mnultipltcative

Confidence limits for E(51) 87 1I~) confidence limits hy 0.959. Thus. on the logarithmic
can also be based on' j,. resulting in axis for f^,, In Fig. 1, the 95'; confidence limsits for the

[1 x~ ~)2L~~2(t* >-] (S 10(0-rn values correspond to 0,48 and f-0.62, [ or the
[1.?212(ý 1 1 15)800-rn averages In Fig. 1. the limits are 0.032 and 1.-2

where ( )2is an estimate of IS 1 for normallIN corresponding to - 0.20 and 4+0. 18 on the logarithmic
distributed shý:ar -omponents. Alternatively. confi- axis.
dence limits can also be based on 0I Tn o form confidence limits for the expected value.

/ ~~ and take the form [,,J.of all datia for each set, for PAI1CIIEX L'1~
X 41 0.920) and 1 I.08. Because the estimate of'I; x 16S,, .) f.I '

(jjis 4.65 . l0 "'. the 95,' confidence limiits are
As discussed in appendix F. V,, and U; , Ure considcrabl\ 14. 10 ,. 10 "', 4,82 -- 10 Simtllarls. for PA I 'I 11
more difficult to obtain than 1L,, and U_, Moreoxer. t"or north 0.90(9 and 1 . 1. 11. WVith an esttmate
n > I the expected distance between the Upper and of the expected value equal ito 4. 18 II 10 . 95", con-
lower confidence limits based on is.3"; -12', fidetice limits% are ( 3.04 :K 10 ", 4.45 -1, 10 (1q
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TABIJ. 5. Changes in ý1, andi al, '.k ith a cragt nf gcnglh, I.. 1-tt.Os9smp nincau n fnit] a fl"dAT(I(J% Ic'll~ Io.n of In '-A iC P1 % -cih, I'
and ic..rspectI6et%. Av.eraging 10-rn noi~c corrected ;ox er 100) and SOO4 ni inkcreases p,,, a1id decicax.es p: 1 or comnipris.Ii thculwf
parentheses are the ones exfpe:ced for is eraging full% independeni anid Iogriornmai,% distribuled MII I-n ap I hexý ecf( flt ulaickd 1".
[avIoi series expainsion and bN Monte C'arlo simulation

PA 1 ('11 X PA I H IN norih

t0 2152 2 2.24 20 07 2( 46

100 216 2 1,1( 2 110) C64 (0 -4( 401 1' ý ( I,),(, I I ) 4 ilioj
SOO) 22) 561 21 2" ( Of ( X) N P) (9 I k ') 4)I 1e 0 Q I

c. The disvipatiott ratei. t , can be obtained! fro'm h~s tables. L and 1 Q72 ) dis-

F-or lognormal disttibutions, the maximum cusses all] aPPru.Xilmatior to 1h,,se limIts duc to D. R,

likelihood estimate of E[ ýj is calculated by evaluating tCkx. Fhr 9impl coform elnt hsaprxmto

( 12) with the sample mean and sample standard taethsipefr

deviation &I, of Ini. In appendix G we discuss some I exp( 1-I.(;6,), -xp( I .9b0I (1'7
difficulties with Baker and Gibson's ( 1987) use of this w'herc
ostimate. [r J j+ T 14 11ILand ( 1975) gives tables for computing exact con-I ;/t c/(i*I I
fidence limits for E[i] based upon ýIT,; and &,,;. These I Baker and Gibson ( 1987) obtained a similar result.
limits can be written as [ ;e~, U,(L~] where L, and While this approximnation is useful for large sample

'PT T T I~ r ___- 7----- T------------ -- ----

08PATCHEX PATCHEX north i
1- 9 MPa -jf ~

C

O1041I

0
tL 06

~~~~noise sma ota uddfr(hsbe added Litho~ ,ti ratsipo h noise alo ateeeo
beC e h n rbaiiydnIL al:uursttP (tX
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1 ,? appeared statistically homogeneous over distances of
kilometers and steady over intervals of days. For one
set, PATCHEX, the internal waves are close to GM 76,
for the other set, PATCHEX north, the root-mean-
square 10-m shear is three times GM76. Our findings
are as follows.

o 10I i) After scaling the shear components. S, and S,.
with (N 2 ). the scaled components, S. and S,- are nor-
mally distributed with zero means and are uncorrelated
with each other. This readily leads to analytic forms

To for the probability density functions of S90 and S10.
The latter is highly skewed, and the standard deviation

100o of lnS o is a constant, orn.',o = 2.57. For PATCHEX
north the measured distributions of Sýo and S9o are
within the 95% confidence limits of the analytic forms.
For PATCHEX the measured distributions are similar
to the analytical forms, but they slightly exceed the
95% limits.

10-1 12) For both datasets the probability densities of the
o00 010 102 103 to' inverse Richardson number, Rim -i S=oi<N 2), are

n close to those predicted. Consistent with Eriksen
FIG. 10. Multipliers for upper and lower 95% confidence limits of (1978), the PATCHEX distribution cuts off near 4.

averages of n independent samples of the second and fourth moments but 9% of the PATCHEX north distribution has
of shear. These multipliers are U, and L, in (13) for S0oand U2 and Ri -I > 4. Therefore, the cutoff at Ri -jo = 4 is not a
L in (15) for So0 . universal constraint.

3) For bulk ensembles of 0.5-m t collected where
(N 2 ) is nearly constant, the lognormal parameters.

sizes and moderate values of &j,;, it can give large errors uJA,, and 0ine, can be estimated objectively by minimiz-
for small sample sizes. For example, we take n = 10
with an; = 1.19 for PATCHEX (Table 5). Tht .p-
proximations give (0.39Wmte, 2.57ýmt•) compared to i05
(0.45imt,, 6.46imt,) for the exact 95% confidence limits
[these limits correspond to (-0.35 + logto~ml1 , + 0.81
+ logl0;onm) on logarithmic axes]. 104

The multipliers L, and U, are plotted in Fig. I I for
= 0.5, I, 1.5, 2. 2.5, and 3, covering the range of

&In; likely to be obtained from observations. As an ex-
ample, the values in the first row of Table 5 indicate r
that imI, = exp(-22.24 + 0.5 X 1.192) = 4.45 X 10-'( 102 ..... ...._......

for PATCHEX and ;t, = exp( -20.27 + 0.5 X 1.462)
4.57 x 10-9 for PATCHEX north. The correspond-

ing 95% confidence limits for E[ i] are (4.17 X 10-•0 01......
4.76 X 10-`) for PATCHEX (based upon n = 2152
samples) and (3.76 × 10-9. 5.69 × 10 9) for 100
PATCHEX north (n = 405 samples). The corre- q-.=-- --5

sponding multipliers are L2152 = 0.937 and U2 s2 = 1.07 1.0
for PATCHEX and L4)5 = 0.823 and U4(5 = 1.25 for .V 101 - -
PATCHEX north. For both datasets the confidence 2.5 F

limits include the estimates obtained using ,'i in ( I 1 3.0____,
and the computed sample averages of 0. 102 1 10

5. Summary and discussion Fio. I I Multipliers for upper (1',) and lower iL,) 95' confidence

limits of averages of lognormal distributions, as functions of thea. Summary number of samples. n, and of the standard deviation of the natural

logarithm of the variable. The multipliers are obtained hb interpolating
Statistics of shear and dissipation are compared for the exact confidence limits given by land ( 1975 ) and are given for

two sets of profiles taken when the internal wave field ry,,. spanning the range expected in the ocean
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ing X fits to the sum of a lognormal distribution and nal wa\e shear o'ei the sanie \erti'al intci\al. .\lso.
an empiricall\ determined noise distribution. In our 10-rn acraged ;data appro\imatel\ IllO• a lognoinral

cases, the noise distribution was observed in an Lin- distribution. whereas the unaveraged ().5-i data tollhmt
usually quiet section below the equatorial undercurrent. at best a complicated lognornial plus noise, model. Since
Fits to 0.5-m r taken in bins of I MPa ýarv in qualit\ decimation leaves the underlxing distribution of the
and have averages of ;it,, equaling 3.01 ± 0. 13 for data unchanged. it is easier to provide a tractihlc sta-
PATCHEX and 2.56 ± 0.17 for PATCHEX north. tistical model for a'craged data than t',r decimated

4) Half-meter t are not uncorrelated but must be data.
averaged %ertically to form uncorrelated samples. The Why are the high-magnitude portions oft probability
minimum averaging length is 10 m for PATCHEX densities lognormal or nearly so? Dissipation is log-
and about 15 m for PATCIIEX north. Both averaging normal or approximatel, so in homogeneous turbu-
lengths correspond approximately to the reciprocal of lence: in the thermocline. f can be lognormal vithin
the wavenumber at which their respective shear spectra individual turbulent patches if the sample length is at
roll off(Gregg et al. 1992). least three times the Kolmogoroff length but much

5) After correcting for noise and scaling t with smaller than the height of the patch (Yamaaki and
SN'2 >, probability densities of 10-m N-scaled dissipa- Lueck 1990). Most ensembles of thermocline data.

tion rates. ;. are lognormal. [ Scaling with .\'' and however, consist of records taken minutes to da s apart
A"."; does not yield lognormalit.. Thus. the Ioga- over distances of' tens to hundreds of meters in the

rithms of 10-m scaled dissipation are normal. As they vertical and hundreds of meters to tens of kilometers
are also uncorrelated. theN can be assumed to be in- in the hori/ontal. Consequently. the samples come
dependent. These distributions have - 1.19 for from places %kith no turbulence as well as from many
PATCHIEX and 1.46 for PATCHEX north. The 1(0- different turbulent patches. Furthermore. the patches
m samples. hovexer. are not full\ independent: are probably produced by a \ariet. ofmechanisms and
namely. f'urther averaging does not reduce i 1,, as rap- are observed at varying stages in their life cycles. As a

idly as expected for independent samples. I'his appears result. these bulk ensembles do not satist\ the assump-
to be the result of weak vertical correlation ssithiin pro- lions made in deriving lognormal distributions for ho-
files and temporal correlation between profles. mogeneous turbulence (Gur'ich and Yaglom 1967)

6) For 10-m samples, the probability densities of or within individual patches in the thermocline (Ya-
10-m logi and log.S, 1 (represented as log,,, ) are similar mazaki and lueck 1990). As also noted for ) (Gregg
at high magnitudes. and mean values of; and ,,, difTer 1980) as well as for ( (Gibson 1981 ), the bulk statistics
by ony 2'(.-20". As a consequence of the frequent of X and t are likelN to be approximately lognormal
lack ofturbulence at low sheai magnitudes. noise affects simply because they have multiplicative rather than
much of the low-magnitude probability density of ;. additive probabilities. Based on the similarity of the
causing it to differ from the ; distribution, high-magnitude portions of probability densities of

7) Our assumption that the data result from random and S'W. we suggest that lognormalitv of(' may be an
processes appears valid since the confidence limits cap- approximate condition resulting from thie production
ture the collapse with averaging (Fig. I ). This also lends of turbulence in proportion to skewed higher moments
credence to our approach in testing for independence. of internal wrave shear. A rigorous lognormal model

8) Ten independent measurements are needed to may be possible. but %e do not knom enough to con-
obtain 95(,* confidence limits of a factor of 2 for struct one.

6( .Sj2) (T2a. Owing to the higher skewness of' its Because most turbulence in the thermocline is pro-
distribution, similar confidence limits for st• require duced by breaking internal waves. the statistics of bulk
as l•w as 40 independent samples. Sixty independent ensembles of' must reflect the character of' internal
dissipation samples are also needed l'or the same degree %avis as well as tile inherent intermittence of turbu-
ofconfidence in 10-m dissipation rates (these are corn- lcncc. Whether or not the fourth shear moment is the
puted using ý-n; ! 1.5 in maximum likelihood estimates best model. depends -n a ske~vcd shear moment that
for PI' •J]). Tightening the confidence limits rapidly in- resembles some characteristics of the lognormal dis-
creases the number oftsamples required. tribution. With onlN two datasets, we obviousl\ have

not proven this relationship, but consider it a hx poth-

h !)icussion esis to be tested.
If these results are substantiated bs further obser-

We average and then decimate to obtain indepen- rations. they ha\e several consequences. l'irst. the
(lent samples. As a reviewer correctly notes. indepen- spread of the distribution ofY,, (or some other higher
dent samples can also he obtaincd by decimation with- moment I should be an approximnate Uipper bound for
out averaging. Although decimation-onlx is suitable Ltie spread of the (^ distribution. It is an upper bound
bor some studies. we need to a\erage and decimate to because the iox'-magniuddC portion ol' the shear di,,-
retain the average dissipation accompanying the inter- tribution on a, erage does not produce turbulence or
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it generates only low ('s. Consistent with this, for the to n 20()0. or 25 MSP profiles pci siic instcad of'
independent 10-m samples we observe -i,; 1 .19 for only one.
PATCHEX and 1.49 for PATCitEX north, signifi- Acknowh'dui• wN. [he Oflice of Na-al Research
cantly less than (I I '4, = 2.57. 'The spread forcatl less tha Of~ = .57. Tesra r funded collection of these data under (•nuraci
PATCHEX north is the larger because the dissipations N00014-84-('-dl II and analtsis undidr (mtract

are larger and less affected by noise. Comparing shear N00014-84-K-069I. whd supprtde Minto

measurements at 12 sites in the Atlantic and Pacific. Mesoscale vnvhi ch s nitiate ic 1a
Smar ( 988 reprtsE -1-1 tims (M76 As Mesoscale University Research Initiative- If,. Yarra/aki

Smart (1988) reports Ii' o-f1) times GM76. As t1ou and D. Winkel gave valuable comments. and we arc
hyp.othe more energetic ofthese sites should test our indebted to the res ie\,er of an earlier ersion of the
hypothesis that .7 is an upper bound ra lega is no suh-
duced b\ internal wave shear. Second. if lognormalit\ siuer physc .omen garbgeinarbage uabs .hsb
is onl\ an approximate condition. lognormal statistics ssttrte hened o rreoe ipr e the asticlsh ud n th-eidolaproi sd tst a p say" strengthened our resolve to impro\ e the ýtali.,tical
should not be relied on a priori, as datasets may ap- training of oceanographers.
proach lognormality to \arying degrees. Third. the sta-
tistics of dissipation are likely to differ considerably
when turbulent production results from processes other \'1'ItNI)IX %

than random internal wave fields. For example. our Details on Statistical lests
development does not apply to turbulence produced
by hydraulic jumps or solitary waves, such as those in a. Ierical uncorrc/adn, 0/N/war ('ml)(Iltft.

the Strait of Gibraltar.
As a consequence of the dependence of microstruc- To examine the vertical correlation structure of S,

ture statistics on the internal wave field, microstructure or S1 . we apply the run test and the spectral distribution
measurements from different times and places cannot function separatel\. The run test is a simple nonpara-
be combined into a single ensemble for statistical anal- metric test of uncorrelatedness (Bendat and Piersol
ysis. For example. Gregg ( 1977) compares three sets 1971 ). A run is a sequence ofconsecutise %alucs lying
of Cox numbers obtained during different seasons at on one side of the median. If then values in the series
28'N. 155'W and notes that their variability suggests are random and independent, the number of runs. R.
modulation of microstructure intensity by mesoscale is a random variable with an expected value
eddies or seasonal effects. Subsequently, Briscoe and
Weller ( 1984) reported an apparent yearly cycle in the E(R) = (2n. n 1n) + I (Al)
energy of high-frequency internal waves in which E and a variance
varies by factors of 2-3 about the long-term mean.
Nevertheless, Baker and Gibson ( 1987)combined the 4 [2n.n (2n.n -- n)]![n(n - I )]. (A2)
three sets of Cox numbers into a single ensemble with-
out considering whether the three sets were indepen- where n, and n arc the number of salues greater and
dent. Proper treatment would consider each cruise as less than the median. and n - = 11. 4 n . For large ti.
an ensemble with its own statistics and then examine E(R) : n1/2 and 0TR ! : VnI4. The hypothesis of un-
the statistics of the grand average. correlatedness can be rejected at the 5'1 level of sig-

How much sampling is optimum for '? The 27 nificance if R is outside the interval
PATCHEX profiles give L,12 s2 = 0.937 and U,Ž,, - 1.07
compared with L,,,5 = 0.823 and U-'4, -- 1.25 for the (1-'(R) - 1.96aR. /'(R) 1.9 6

0R). (A3)
5 PATCHEX north profiles. Because we do not believe
our calibrations are better than the PATCHEX north For instance, each profile contains 81.', samples be-
confidence limits, the additional sampling during tween I and 9 MPa. leading us to expect 40.5 runs in
PAT('HEX did not improve our overall confidence in each record with 95*7 conlidence limits ot( 32.2. 49-8).
the averages. If our objective had been to estimate We applied the run test to all S, profiles and to all
whether a large area had a vertical eddy diltusivity of .S, profiles. For PA ICIRIEX. R lies outside the 95i"
1() 4 or I0 5 m 2 s . a more accurate result would hase confidence limits in three .5, and fourrS, profilcs ( [able
been obtained by sampling to obtain ' 100(; accuracy A I ). For PAI'C I IX north, on the other hand. one .5,
at each of many sites. The sites should he separated by and threeS, profiles are out ofh'bounds. I:or comparison.
about 20 km. the approximate correlation distance for with a level of signilicance of 5"' and with truly un-
internal wave statistics (D'Asaro and Perkins 1984). correlated data. we expect incorrect rejictions in ap-
Assuming a,, 1.2-2.57 requires t 33-282. equiv- proximately 0.05 , 27 1.35 profiles out of 27. Ihe
alent to 1-4 MSP profiles per site for ± 100"; accuracy, number of incorrect rejections itself varies about its
If (T,, 1.5. specifying 1 I10' accuracN for 95'V eon- expected value. Io assess the magnitude of his va-i-

fidence limits, as in the abstract of lBaker and ( ibson ation, we simtulated normally distributed whitc noise
9 U,871. increases sampling requirements from n 60 with zero mean and the same standard des ation as
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TABLE A l. Tests for independence. The run test (RT) fbr a profile b. Uncrrelatedness between simulhaneous shear
is rejected as containing independent samples when R, the number
of runs, exceeds the 95% confidence limits (A3). The spectral distn- components
bution function (SDF) of a profile is rejected when any point exceeds Taking all pairs of S, and S, for each cruise, we
the 95% confidence limits for the Kohaogoroff-Smirnoff test. The
number of rejections is left of the solidus, and the number of runs is compute Spearman's rank-order correlation coefficient

right. Only for S, and S, for PATCHEX north is (he same profile and Kendall's r. Both coefficients are well-accepted
(MSP 120) rejected by both tests. Each profile contains 91 samples nonparametric tests whose validity does not depend
of 10-m shear. on the assumption of normality (Conover 1980). We

Rejected Rejected Rejected compute the coefficients using numerical routines of

by RT b% SDF bR both Press et al. ( 1988 ). In all cases we cannot reject (at the
0.05 level of significance) the null hypothesis that 5,

PATCHEX and $, are uncorrelated. Neither test comes close to

S. 3/27 0/27 0/27 rejecting the null hypothesis; the closest is Kendall's r

S9. 4/27 2/27 0/27 0.0133 for PATCHEX. which can be rejected only
S2 2/27 2/27 0/27 at the 35% level of significance. For comparison, r
Sto 2/27 1/27 0/27 = -0.0067 for PATCHEX north can be rejected only

with an 84% level of significance. Therefore, we can
PATCHEX north treat S. and S, as uncorrelated with each other.

1/5 2/5 I/5
91 3/5 2/5 I/s c. Lilliekbrs statistics for 95% confidence limits
9',. 0/5 0/5 0/5 on q-q plots

s4o 0/5 0/5 0/5 The 95% confidence limits are derived from Lilliefors

statistics for normal or exponential distributions (Ma-
son and Bell 1986). The Lilliefors statistic is a modi-

the shear components. We grouped the simulated data fication of the Kolmogoroff-Smirnoff st ,istic to com-
into 27 profiles of 81 samples each and applied the run pensate for using estimated parameters. Computed by
test in the same fashion as we did with the real Monte Carlo simulations, the modification generally
PATCHEX data. By repeating this procedure 1467 gives a smaller acceptance region when parameters
times, we observed 2 or more rejections out of 27 pro- must be estimated than when they are assumed to be
files in 34% of the repetitions; 3 or more in 12% of the known. Mason and Bell extend previous calculations
repetitions; and 4 or more in 3% of the repetitions (the by Stephens (1974) for estimated parameters and revise
maximum number of rejections we observed was 6). Stephens' critical values using improved Monte Carlo
Therefore, the number of rejections for PATCHEX techniques. For S., and S9. in Fig. 2, we assume a known
does not suggest gross departures from uncorrelatedness mean of zero, corresponding to normal case 2 of Mason
for S, or for Sy. This is not true, however, for and Bell. For q-q plots of S' 0 and S`0 , we use the ex-
PATCHEX north; rejections exceed the number ex-
pected by chance, indicating vertical correlatedness in
both S, and S,.

The second test uses the spectral distribution func-
tion, which is the cumulative integral of the spectral 08.
density function. (The empirical version of this func-
tion is known as the cumulative periodogram.) Un- 0.s6- -P20

correlated samples have a white (flat) spectral density •0o
function and, equivalently, a linear spectral distribution
function. Consequently, an empirical spectral distri- to,
bution function of uncorrelated data should fluctuate

about a straight line, and this is used to test for uncor- -

relatedness (Jenkins and Watts 1969). A profile is re- 02[ PATCEX nt1 " 1gM Pa

jected as being white if any point of its spectral distri-
bution function departs from the expected straight line 0,0 .

by more than the 95% confidence limits using the Kol- 000 001 002 003 004 005

mogoroff-Smirnoff test (Fig. A I ). As is evident in Ta-
ble A I, the number of rejections is similar to that for Fm,. Al . Spectral distribution functions (aka cumulative penod-
the run test, but the pattern of rejections is random. ograms) for PATCHEX north 5, profiles. Cumulative vanances.
Only one S9, and one S5 profile are rejected by both normaliz d to maxima of one. are plotted on the v axis versus vertical

wavenun her on the x axis. Spectral distribution functions of white
tests, which we take as further evidence for no gross noise would plot along the diagonal. The dashed lines are 95% con-

departures from uncorrelatedness. fidence litiits of the modified Kolmogoroff-Smirnoff test.
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ponential case. For 2, we must estimate both the mean where -y = 0.57721 ... is the Euler constant. The sec-
and standard deviation from the observed distribution ond moment is
and use case 3 of Mason and Bell. E = n 2 (4,)- 4' ln(4ir)+ 4(- + y2)

APPENDIX B (88)

Derivation of Probability Densities yielding

a. Probability density ofgS a = (2/3)v', (B9)

Rather than comparing the probability density of or
S92o with observations, it is more convenient to use z aZ =0"rnS = 2.57. (B10)

logS�1~ o = InS o/In10. Following standard proce-
dures (Papoulis 1984), we take y - S10 and Therefore, ardo is constant, independent of variations

2o g in a,.
G(y) = z = logloy = log,0S10 = InS10/1n 1. To compare this with observed distributions, we plot

It has one root, y, = e "), and the derivative of the 12 a

function is G'(y) = 1/(y In 10). Consequently, P= in ioez:-Ile-
P y(Y , In lnl e z ' nO ee" 'n"°/2ý1 4 & 2

-P= (y~) n)I 2 (BI) zz -- lognow = log 1oS0o. (BI I)

Using (4) to scale Sg4 as i, the logarithmic formb. Probability dest 0o ~ is

Following the same procedures, we return to (8) to lnl0• e-67"2a
obtain the probability density of So0 . Defining P = tnlogio,. (B12)

g(y) = y2, y has only one positive root, y, = Vw. 4c2 '
Therefore,

APPENDIX C
_P•.(yl) _exp(-y/2h•)

P. =i for y >, 0. Statistics of -10 and S9'
w -- y 2 = S4o (12) a. Vertical uncorrelatedness of So0 and S'0

The first and second moments are No PATCHEX north profiles are rejected by the
run test or by the spectral distribution function (Table

4• Al ), and only 2 of the 27 PATCHEX profiles are re-
E[W] =F wPdw = 8o (B3) jected, none by both tests. Consequently, these tests

give no indication of significant correlatedness in -S2o
and and Sg4. Presumably, the moments have fewer rejec-

tions than the shear components because they depend
E[w 2] = w P•4dw = 384t•. (B4) on both S. and S9, which are uncorrelated with each

other.
Therefore, the variance of So0 is also a simple function
of 6•, b. Temporal correlatedness

=To examine temporal correlation for PATCHEX.
we average 1, S,., S(), and lIo over 100-m segments

and the standard deviation is always 2.2 times the chosen to minimize decorrelation due to vertical dis-
mean, a, = 17.9al = 2.2 E[w]. placements by internal waves and the internal tide.

For later use with lognormal statistics, we define z This results in eight time series for each parameter.
=h(w) = Inw, which has one root. w1 = ez. Then with each set containing 27 values, one for each profile.

p• P( w1 ) Ve~e-•/' None of the run tests for S, or 9, must be rejected.
= -(W1) 4In' = InSg4, but two of the eight series for 10 and S10 must be
lh'(wl)l 4as rejected.

(136) c. Decrease in variances with averaging

and the first moment is The probability densities of, SW and So allow us to

E[z] = ln(4 U4) - 2-y, (B7) predict how arithmetic averaging reduces the variances
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IAtLI- Ci l)ecrease in a ýkith axeraging length, V ,. In each columin the ohwilcd ,;ioc,, ot , , i ,, arc gin llII .I 1 It llwhscd In
parentheses by the analtic .alues determined fron (U 21. (('31. and (( 4) Also %%ithin the parcnIhhces aic Itandaird de's idtI itimA wk I n tlb . ilOjtc,
as determined from Monte Carlo simulations.

PAR-\ PC ICI F X1(1CI nor\l)

L: (m ) alisio ,fln.s',, , -, .. ;.

10 1.27 (1.28 +- 0.03) 2.55 (2.56 _0.115) 1.IS11h.2•8 0.+M 71 21, 2 1 f 0 l,)
100 0.42 (0.32 - 0.02) 0.85 (0.68 0 (.113) 0. 3 -2 0 .1)41 11Q2111 (0 I 7 i1

8(X) 0.19 (0.11 0 0.02) 0.33 (0.24 t 0.03) (0.17 10.11 , 0.103 (q. 1 ; 2t I 1 (IS)

of these moments. Owing to the large skewness of the 50%. The discrepancies are largest for the 800-m a\-
probability densities, we describe the variances with erages. suggesting that a weak temporal coherence mav
o7w1 g•1 anda 11 which also facilitates comparing shear be partly responsible. In view of the discrepancies, the
variances with variances of . increase in degrees of freedom with averaging is not as

If the shear components are independent. 50 is dis- large as expected.
tributed as an X 2 random variable with two degrees of
freedom, that is, APPENI)IX [)

S.l Assessing the Lognormal Plus Noise Model
S C, - (CI We investigate the hypothesis that the 0.5-m uncor-

whee 2rected e data in a particular depth range can be regarded
where S1 , representsa , the 10-d shear vainances for I as the summation of( I1 )a lognormallv distributed ran-

=12. Then' dom variable with parameters Ain, and a1 1 , and (2) ran-
. Thdom noise. Specifically, we assume that t-- A t+ N.

= var(lnS9o0 ;) = var(ln(cX2)) =- var(Inx2). where A is a lognormal random variable with

(C'2) E: A 2  and var- k

That is, the proportionality factor, c, does not aflect LE 2 - (Li A)2 k If 2
Mi (e'A, I ). (DI)

the variance.
These variances are given analytically (Bartlett and That is. ln( A) is Gaussian distributed with mean .,

Kendall 1946) as and variance ai. The noise variate N is assumed to be
independent of A and to follow the observed distri-

var( lnX 2) 2 •,'(K), (C3) bution from TROPIC HEAT 2 between 9 and 9.5 MPa.

where,' '(K) is the derivative ofthe digamma function By ordering .11 = 1480 noise values as n, < n- < • • •
(sometimes called the trigamma function). For K - 1 < n and assuming each cquall\ likely, the probability
we have #'( I) = r2/6, yielding cr,.s-,, = r/ = 1.28. of a value less than n, is

This is in good agreement with the observed
PATCHEX data and within 10':,' of the observed P[IN -. (1)2)
PATCHEX north data (Table CI). We use Monte .11
Carlo methods to assess the expected variability in We next determine the cumulative distribution
estimates of var lnX\ 2F function for observations of dissipation plus inoise.

When averaging SI, over 100 and 800 m. we are
adding independent scaled X2 random variables with lix ) P[ -> .\] . P[.1 4 . .\
two degrees of freedom, yielding scaled X2 random
variables with more degrees of freedom. Therefore. we x P[ A V .\ and N n,]
have ,

1 10 
"

1 80

var In[i Si 1., = var(InX,,,). (C4) I

For the 100-m PATCIIEX averages and for all of ' "

the 800-m averages, the observed variances exceed the F" , /",( X n;. (0)3)
predictions (Table CI )-in some cases as much as J/ I
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where F.(. ) is the cumulative distribution function of (.-•n) - 9 n) aA( 'I n -n9
the lognormally distributed variate A; that is, X '] . (I)9)

F((n(x-nj)- AA). if xn>)n, If0 < A - n, < - we have
0, otherwise. Fý- (In(-A) ---n ,

(D4) 
-

and 4$(.) is the cumulative distribution function for a IInx
Gaussian random variable with zero mean and unit -. n1 )
variance. a.

Given a sample ti, t, ..... El of( measurements in w ,'V2r. (DI0)
a particular depth range, we fit our model using a min-
imum chi-square procedure (Conover 1980, pp. 195- On the other hand, ifeither.xk n, or.k 7. we have

197). We use K bins bounded by x- and x, such that aFl( .vk - n,)ip., 0 0. Likewise. we have
0-xo<x <.x2'< ... <XA-1 <X-- 00. (D5) a(g.._ I O

The kth class of observations for k = I up to K is

defined to be the set of all f measurements satisfying n ' • -) _A(V I - n')

xk_ ( < xk. Let Ok be the number of( measurements o a ag,
in the kth class and let EA.(y,, a,) be the expected
number of measurements in that class under the as- If 0 <xA - n, < xD . we have
sumption that our proposed model is true with log- a1.:( xk - n,)
normal parameters AA and U.A- We then have

Ek,(p,. a-) = L X (F,(x.) - F,(xk-I)), (D6) ln(.\A - n,) (lln(.k - p,) - .A

which can be computed for a given A., and uA as out- .-- (D12)

lined. We can then form the statistic

)2 otherwise, we have aFA (X• - nf)/OaUA = 0.
T(., ) = (Ok - E40A, CA))" Typical fits are shown in Fig. Dl. and the resulting

k-1 Ek(A.A, OA) estimates for ý, and a., are shown in Fig. 7. The

K o2 corresponding values lbr T(IA. Z-A) are given in Ta-

Sk L, (37) e D1.
=-i EA(AA. o,) If the c's were independent of each other, we could

assess whether the observed departures from the fitted
where we have made use of the fact that

K K 1.4-

Ok 0 : = 1 EA(PA, a() = L. (D8) ,.TCHEX

k-11 5-6 MPa

The minimum chi-square procedure is to estimate A.,
and aA as those values such that T(A, ( a) is mini- 0
mized.

To find A and ý., (here the tilde indicates a sample 0.4

estimate), we must use a nonlinear optimization rou- 0,2

oine, for which it is helpful to have expressions for the 0.0 - ---

partial derivatives of T(p,. a,) with respect to A, and log, 0 r
aA. Hlere

oT(u A h 02 PATCHI X ,0";

A_ 0.(4--, A I-

EA (1A) ()AA

A: 02 A
log,, r

Flo. t)l. IExamplcs of )" tits to histograms of obwr~ed

k--I A•., ,,(jA I0 I), 
5 4r log, taken in hins of I M1Pa.
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TABLE Dl. Chi-square statistics for fits to 0.5-m e. L is the number of samples in each I-MPa interval used for fitting, and K is the number
of classes into which the observations were grouped (this number varies between 28 and 38 to ensure that each class contains at least 1(
observations). If the L samples were independently distributed, the chi-square statistic T1i.ý,,a would approximately follow a chi-square
distribution with K - 3 degrees of freedom (here A, and &A are the minimum chi-square estimates of the lognormal parameters u and a.,.
Because the samples are correlated, assessment of lijiAZr) is problematic, but a Monte Carlo study of normally distributed band-limited
white noise indicates that we have reasonable goodness of fit for PATCHEX north, whereas the opposite is true for PATCHEX.

PATCHEX PATCHEX north

MPa L K 7t1A,,a) L K 71ýAb:.

1-2 5361 38 332.1 993 36 78.4
2-3 5372 35 249.2 996 33 67.3
3-4 5382 32 326.8 997 33 107.9
4-5 5382 34 305,9 1000 37 53.0
5-6 5384 32 299.2 996 30 51.4
6-7 5396 29 292.5 998 38 8O.8
7-8 5389 28 398.0 998 33 52.9
8-9 5393 30 316.1 997 36 48.9

distributions are consistent with random error by Let xp be the pth quantile of the •i distribution.
comparing the value of T(UA, GA) to a chi-square ran- Then
dom variable with K - 3 degrees of freedom (Conover
1980). Unfortunately, the care not anywhere close to p P IcS'•0., < xp] = P[ 2 4
being independent, but based on the assumption that =P[X 2< VXp/C/2, = Pjx1 < x],, (El)
correlation and distributional properties can be decou-2
pied in a chi-square statistic, we can crudely determine where x, is the pth quantile of the x 2 distribution. We
the effect of different degrees of dependence on the chi. thus have
square statistic by the following procedure. x, = (C a x') (E2)

For an integer M > 1, consider a normally distrib- N = (crilotd)2.
uted band-limited white noise process with a low-fre- Next, let yp be the pth quantile of the [ disuition,
quency cutoff of I /2 M. The theoretical autocovariance
sequence for such noise is positive for lags less than M
and is zero at lag M; hence, by choosing M in the range
from 10 to 20, the autocovariance sequence for the PATCHEX
band-limited process will mimic the observed sequence
for the 0.5-m c-, which damps down to zero typically -9
in the range from 5 to 10 m. We then generate samples
from this process with a number of points comparable
to those obtained in either PATCHEX (5380) or
PATCHEX north (1000) and fit the data to a normal
distribution using the minimum chi-square procedure
outlined above. By replicating this procedure many dif-
ferent times and looking at the observed values of the
chi-square statistic, we find that the range of observed -, -,10 -g -g
chi-square statistics in the simulations matches very logo10

closely the range of values for T(•A, a,) shown in Table -1
DI for PATCHEX north. For PATCHEX, however.
the values are about a factor of 2 to 3 larger than those PATCHEX north
in the simulation study. Thus, we conclude that our
operational model fits the PATCHEX north data rea-
sonably well, while there is evidence of a lack of fit in X /
PATCHEX (this can be seen in Fig. DI, where the _
fitted distribution and the histogram disagree markedly -,
in the central portion).

-10 VI _ _
APPENDIX E -to -9 -. -7

Theoretical q-q Plots log'o i

Ft;. El. Plots of theoretical q-q distributions for log1 o;,. and
q-q plots of 10-m r and . Iogl0; agree well at high magnitudes hut not at low magnitudo,
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andlet Zbe anormal random variable with zero mean [L, x KS'o), U, X (S90)], (F7)
and unit variance; then

=log(- A,.; log(y)- 1 w 2n 2nP ~ ~ P l n _ - r n .IL , , n _ a n d U , 2 ( F 8 )

= P Z log(y) - = P[Z a< yn], (E3) - X2(( 1)), 2

-'ln To evaluate X2,.,. we use Eq. (3) ofZar ( 1978); to

where y, is the pth quantile of the standard normal input x, the standardized normal deviate, we use the

distribution. We thus have approximation for 4-' (p) in Table 6.5 of Chambers
et al. (1983).

Yp = exp(Min; + Ypjn;). (E4)

The q-q plots of these two theoretical distributions b. Confidence limits for E(S1o)
agree well at high magnitudes (Fig. El ). As noted in the main text, confidence limits for

E(S10) can be based either on (10o> or on
APPENDIX F

Confidcnce Limits for E(.Sj) and E(o) KS•0o - n .(19)

a. Confidence limits for E(9S' 0) Let Q. denote the average of the squares of n indepen-
dently distributed x2 random variables, and let Q,,,

Previously we found that S is distributed as a re- represent the p X 100th percentage point of the distri-
scaled X2 random variable with two degrees of freedom: bution of Q,; that is, P[Q, < Qh.J,] = p. A p X 100%

confidence interval for E(Sb0) is given by
__ ,- , d 20 (Fl)(FI0)

using E(S' 0) = 2o2. Averaging n of these 9so0j yields where

In d -2~0  8 8
(50> -�0 S1 0 j - E 2 (F2) and U,. (FI)

n 2n Qn.,(I+p)/ 2  Qn.(l-p)/2

or, equivalently, The percentage points Q,,, can be determined either
by Monte Carlo simulations or, if n >, 100, by an Edge-

2 a> d worth approximation to the distribution of Qn I see sec-
E(S•0 ) X2 q, (F3) tion 1.5.D of Bickel and Doksum (1977)1.

where x 2,, denotes a x 2 random variable with 2n de-
grees of freedom. APPENDIX G

To obtain confidence limits for E(S~0 ), let X 2n,p
represent the p X 100th percentage point of the X2  Comments on Baker and Gibson (1987)
distribution with 2n degrees of freedom; that is,

Px, < x2 (F4) Baker and Gibson ( 1987)urge using lognormal sta-P[2 Xp] = p, (174) tistics to estimate (c) in the thermocline. We agree
where P[A] refers to the probability of the event A. that lognormal statistics are useful for planning field
Then measurements, but do not concur that they should be

routine for post facto data analysis. In the first place,
2n2So< 2p not all datasets are lognormal. As noted in the text,-S2 X2+p)/2] = P" (F5) ourtprofilesaredefinitely not lognormal unless scaled

with (N 2 ) and corrected for noise. Second, at present
This is equivalent to there is no rigorous model demonstrating under what

p[ 2n(,9lo) g2 2nS -2 conditions ( should be lognormal in the thermocline.
x,2 _ E(S o) < 2n(So> = p. (F6) Our hypothesis in this paper is that lognormality of

•2n.(I+p)/2 X2ni-p)/2 scaled and noise-corrected data is an approximate
rather than an exact condition.

Therefore, the p × 100% confidence interval for T1.ird, Baker and Gibson (1987) claim that the mle-
E(S,0 ) is bas,'d estimator 9m.1 of the parameter u has smaller
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TABLF GI. Statistics of 10-m dissipation between I and 9 MPa. R:FLREN('ES
For small samples of lognormal distributions, arithmetic estimators
of the mean are more efficient than maximum likelihood estimators; Baker, M. A.. and U. It (ibsion, I[ 9h: Sarnpling turhulcnic in thte
that is, var'I. , A '- < var.m lt r 2n . " 1 10 the efficiencN stratified occan: Stalistical con1tsuences ot sironnieiiin.
is infinite. J hvit% O( 'ono,'r. 17, IS17-.13t .

Bartlett. M, S.. and R. (; Kendall. 1946 ' fhe statisti-al analssis tfi
variance-heterogeneitt and the logarithmic transformation J

n xar .t,,,: 'ar; V.,,, Ratio (elthcienc Ro Star s '; o( Sppl 7, 18X-l 33.
Bendat, J. S.. and A G. Piersol. t971 Rand,•lt Olu .Itnt/i ts *and

10 41 381 397 761 259 156 159 6718 Ihe'auremnt, Pnt irodurts Wile -.lntersciencc. 407 pp
15 631 252 172 771 3.65 Bickel. P J. and K. A. Doksum. 1977: ,¶athometitat, t, Ialio'(
20 153 173 129 578 118 Idea.s and S./'htwd Ibpit N Holden-D)aý. 493 pp.
21 128 3(X) 123 408 1.04 Briscoe, M. (G., and R. A. Weller. 1984: Preliminart results from the
22 109 528 117 798 0.93 long-term upper-ocean studN ( LOTUS t Ipi ltiftim (•lln,
25 74 122 103662 0.71 8, 243-265.
50 16 761 51 831 0.32 Cairns. J. I... and G. 0. Williams. 1976: Internal isase obs•rsations

100 6 046 25 9)16 0.23 from a midv.attr float, 2. J (iGephtih Rt,5. 81, 1943-1950
X, - -( 0.17 Chambers. J. M., N. S. Cleseland. B. Klciner, and P. A. 1 uke%,

1983: Graphital Uclthods lor DIta .inalyso I)uxburx Press.
395 pp.

Conover. W. J.. 198(1: lPra•t(al Notparaniirv . stjtso •. 2d ed

Wiley. 493 pp.variance than the sample mean Xi,,. This is true for D'Asaro. A.. and H. Perkins. 1984: A near-inertial internal %%asc
moderate-to-large sample sizes, but it is not true for speetrum for the Sarga.sso Sea in late summer. J 'Jit-% ()('ian,,r.

very small samples. In fact, for samples sizes n such 14, 489-505.
that Desaubies. Y.. and W. K. Smith. 1982: Statistics olf Richardson num-

ber and instabilitv in oceanic internal wascs. J Pht , 0, eatwer
12, 1245-1259.

n _< 2(r-2  I (G I ) Eriksen. C. C.. 1978: Measurenr:'nts and models of fine structure.
internal graxity waves, and wase breaking in the deep ocean, .1
G'ophys R's . 83, 2989-3X)9.

the variance of frn, is infinite! This condition is cor- . .. I9 82:Obserxationsofinternalwasereflectionsolfslopngb ot-
rectly stated by Baker and Gibson following their Eq. toms..IJ (,,tphv,. Res., 87. 525-538.
(B I I ), but they do not note its practical implications. Gargett. A. F., 1990: Do we really knoss now to scale the turbulentkinetic energy dissipation rate t due to breaking of occanic in-This becomes an issue in their section 3, where they ternal waves? J. (Giophy% R%.. 95, 1I 97 I-15 174.
represent an example from Gregg (1977) with a Garrett. C. J. R. and W. H. Munk. l972a: Space-time scalcs of in-
= 4.41 and n = 10. For this value of o2. n = 10 is the ternal waves. GC'ophy t. Fuid l)n. 3. 225-264.
smallest sample size for which var{ Xrnt, is finite. If ---- and .... 1972b: Oceanic mixing bv bicaking intcrnal waves.
we use their Eqs. (B 10) and (BI l ). we can compute Deep-Sea Res. 19. 823-832.we.use.--,and --- , 1975: Space-time scales of internal "awes: A progress
var { Xnie}, var { Xz, k and their ratio for small n. Table report. J. (-,ol)"yN Rt'x.. 80. 291-297.
G I shows that, for nt _ 21, we should prefer fam over Gibson. C. H.. 1981: Buotant} effects in turbulent mixing: sampling
Xmtle as our estimator ofy. while the opposite holds for turbulence in the stratificd ocean. .intr lut. Ii'r,,t .lt'r,,-
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